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Supplementary Methods 

Sightings and Modeled Taxa. In the EC, we retained 21,946 cetacean sightings for analysis, omitted 4,786 

sightings, and modeled 25 individual species and 3 multi-species guilds (Supplementary Tables S1, S2). In the 

GOM, we retained 4,361 sightings and omitted 585, and modeled 17 individual species and 2 multi-species guilds. 

Detection Hierarchy. Buckland et al. recommended that at least 60-80 sightings be used to fit a detection 

function1, but stated that the number of sightings required depends on the level of precision desired, and a simulation 

study found that low bias can be achieved for some detection functions with just 30 sightings, the fewest number 

tested in that study2. These results collectively indicate that there is no hard-and-fast minimum, but to maximize 

precision and minimize bias, one should avoid fitting detection functions with few sightings. When too few are 

available, a typical workaround is to pool sightings from multiple surveys or species, then apply the fitted detection 

function to all of them3. With this approach in mind, we arranged our surveys in two hierarchies—aerial and 

shipboard—that grouped them according to similarity of observation protocol and platform, and used the hierarchies 

to guide our pooling decisions. 

For the aerial hierarchy (Supplementary Fig. S1), we first split off the North Atlantic Right Whale Sighting 

Surveys (NARWSS) from the rest. Its primary mission was to locate right whales, alert mariners of their presence, 

and obtain photographs for mark-recapture analysis4. Although NARWSS aircraft utilized bubble windows, 

NARWSS did not have a belly observer and the survey protocol required observers to dedicate less attention to the 

observing the area immediately below the aircraft than is recommended for distance sampling, necessitating special 

treatment during analysis (see below). We split up the remaining surveys according to whether a belly observer was 

used, the altitude flown, the surveyor organization, and the survey program. For the shipboard hierarchy 

(Supplementary Fig. S2), we first split off surveys performed with the naked eye from those performed with 

binoculars. We then split the binocular surveys first according to platform height, then vessel, surveyor organization, 

and survey region. 

To ease the problem of obtaining sufficient sightings of rare species to fit detection functions we incorporated 

additional sightings from surveys conducted outside of our study area. These include the REMMOA and NOAA 

surveys of the Caribbean5,6, the MAR-ECO survey of the mid-Atlantic ridge7, and the SCANS II and CODA 

shipboard surveys of the European Atlantic8. We used these surveys only in fitting detection functions; we did not 

use them in the spatial modeling stage of the analysis. 

Detection Functions. At each node of the detection hierarchies, we tallied the number of sightings of the 

modeled taxon reported by all surveys under that node. When a suitable number of sightings existed under a node, 

typically 60 or more, we fitted a detection function specific to those surveys. If too few were available, we ascended 

the hierarchy to the parent node and tried again. If we ascended very high in the hierarchy—typically to child nodes 

of the “all surveys” node at the top—without obtaining sufficient sightings, we pooled sightings of additional 

“proxy” species into that branch of the hierarchy and started over. For example, when modeling humpback whales, 

too few humpback sightings were obtained from shipboard surveys to fit humpback-specific detection functions, 

despite pooling many years of surveys. To compensate, we added sightings of all other baleen whales as proxies for 
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humpbacks, which allowed us to fit several shipboard detection functions. For proxy species, we consulted the 

literature and species experts for selecting species that displayed similar size, behaviors, and other characteristics 

that affect detectability. The taxon-specific supplementary reports (available at the OBIS-SEAMAP repository) 

specify, for each detection function, whether proxy species were used, which ones were used, and how many of each 

were sighted. 

Following Buckland et al., before fitting each detection function we right-truncated the sightings at a distance 

that removed any “long tail” of distant sightings1, typically resulting in a loss of roughly 5% of the sightings. We 

then fitted a number of formulations and selected the one with the lowest Akaike information criterion (AIC). We 

tested both conventional distance sampling (CDS) and multiple-covariate distance sampling (MCDS) formulations. 

For CDS, we tested hazard rate (HR) and half normal (HN) key functions with no adjustments, HR with second and 

forth order polynomial adjustments, HN with second and third order cosine adjustments, and HR with a forth order 

Hermite polynomial adjustment. For MCDS, we tested as covariates the group size (number of sighted animals), the 

Beaufort sea state, the observer’s subjective estimate of the quality of observation conditions (or sun glare, if quality 

was not available), the survey ID (when sufficient sightings were reported by all surveys in the pool), and the vessel 

or aircraft that was used. When pooling multiple surveys, we only used covariates that were defined and collected 

the same way among all surveys in the pool (e.g., as occurred when pooling multiple surveys from the same 

surveyor organization). We discarded covariates that produced obvious erroneous effects (e.g., when detectability 

was predicted to increase with increasing Beaufort sea state). 

Although large surveys such as NARWSS occasionally reported enough sightings to fit detection functions on a 

per-survey basis, exploratory analysis showed that per-survey detection functions fitted to a series of very similar 

surveys almost always achieved poorer fits than a single detection function fitted to all of them together. For this 

reason, we rarely fitted detection functions on a per-survey basis. 

Several aerial survey programs measured vertical angles to sightings using marks on windows or wing struts, 

resulting in “heaping” of distance values1, typically at 10° increments. For these, we fitted detection functions to the 

heaps, using angular cutpoints that were halfway between the heaped values1. Several aerial programs also suffered 

from an inadequate view of the survey trackline, due to not having a belly observer or bubble windows, or, in the 

case of the NARWSS program, to observers not focusing adequate attention on the trackline, resulting in missed 

detections at short distances. For these surveys, we applied left truncation1.  

We fitted all detection functions using the R mrds package version 2.1.10. The taxon-specific supplementary 

reports available at the OBIS-SEAMAP repository document the pooling that was done and the detection functions 

that were fitted, along with statistical diagnostics. 

Probability of Detection along the Trackline. Distance sampling methodology assumes that the probability of 

detecting objects that lie along the trackline (i.e. at distance 0) is 1. This is often called the “g(0)=1” assumption. 

Unfortunately this assumption often does not hold for cetacean surveys. Cetaceans dive; while submerged, they are 

unavailable to be detected at the surface. Cetaceans may also be difficult for observers to perceive, due to their size, 

coloration, or failure to display obvious visual cues9. These two problems are known as availability bias and 

perception bias respectively and result in an underestimation of abundance unless they are accounted for10. 

A recommended solution is to utilize two independent observer teams and perform a mark-recapture distance 

sampling analysis11. This approach was closed to us, as most of our surveys used a single observer team. Instead, we 

consulted the literature to obtain estimates of g(0) that incorporated these biases and then, when applying the 

detection functions to estimate abundance for each survey segment, we scaled the estimated abundance with the 

inverse of g(0) 3. The taxon-specific supplementary reports available at the OBIS-SEAMAP repository document the 

g(0) estimates we used. 

Splitting of Survey Transects into Segments. Concluding the first stage of the analysis, we split the survey 

transects into segments and predicted abundance for each segment. Prospective model users requested density 

surfaces with 10 km resolution, therefore we sought to obtain segments of this length. For each survey, we first 

iterated through the sequence of points that defined the transects, finding sections of continuous survey effort, 

defined as a sequence of effort points for which there were no off-effort gaps of 1 h or more and no stretch of 15 km 

for which 1/3 or more of it was off-effort. We then split each continuous section into equal-length on-effort 

segments, as follows. 
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First, we computed the number of segments for the continuous section, n, by dividing its length by 10 km using 

integer division. If the remainder was less than 5 km, we distributed the remainder evenly among the n segments, 

resulting in n segments slightly larger than 10 km. Otherwise, we increased the number of segments by 1 and 

computed their length by dividing the continuous section's length by n+1, resulting in n+1 segments slightly smaller 

than 10 km. Under no circumstances did a segment span more than 15 km of effort. A very small number of short, 

spatiotemporally-isolated segments occurred and were preserved, so long as they were longer than 1 km. 

In the EC region, the segmenting procedure yielded 106,813 segments with a mean length of 9.95 km (SD=0.89 

km). In the GOM, it yielded 19,988 segments of 9.75 km (SD=1.56 km). 

Delineation of Seasonal and Sub-Regional Strata. Some cetacean species, particularly baleen whales, 

migrate between biogeographic regions as part of their reproductive cycle. Modeling the density of these species 

from environmental predictors can be problematic, as their environmental preferences may change between times of 

year—e.g. during summer, baleen whales might prefer cold, productive waters for feeding; during winter, they 

might prefer warm, calm waters far from predators for calving12. To address this, we reviewed what was known of 

the life history of each taxon. If the literature suggested the taxon exhibits seasonality in which its relationship to the 

environment is expected to be different during different times of year, we split the year into taxon-specific seasons 

to be modeled with separate spatial models (fitting each seasonal model to the segments from that season), provided 

that we had sufficient survey coverage and sightings to model at least one of the seasons effectively, and that the 

spatial pattern in the sightings resembled the expectation described by the literature. We delineated seasons at month 

boundaries. If the literature offered no conclusive description of seasonality or we lacked the data to reproduce it, we 

modeled the taxon with a single “year-round” spatial model. 

After investigating seasonality and, when appropriate, splitting the segments into seasonal strata, we reviewed 

what was known about the spatial ecology of the taxon during each season. When the known ecology of the taxon 

indicated that it either exhibited ecologically different behaviors in different parts of the study area (Supplementary 

Fig. S3), was typically absent from an area (Supplementary Fig. S4), or there was reason to believe a taxon was 

present but we lacked the survey data to confidently model its density (Supplementary Fig. S3), we split the study 

area into sub-regional strata and modeled them separately. The taxon-specific supplementary reports available at the 

OBIS-SEAMAP repository document the seasonal and sub-regional strata we defined. 

Spatial Models. For each taxon, after splitting the data into seasonal and sub-regional strata we fitted a 

generalized additive model (GAM) to the segments in each stratum, using abundance on the segment as the response 

variable, the natural logarithm of the surveyed area as the offset (calculated as 2(wR-wL)L, where wR is the right-

truncation distance of the detection function, wL is the left truncation distance (or 0 of left truncation was not 

applied) and L is the segment length), and environmental covariates believed to correlate with cetacean distributions 

(Supplementary Table S3). We only considered covariates that were appropriate for the ecology of the taxon and the 

sub-region of interest. For example, mesoscale eddies shed from the Gulf Stream or Gulf of Mexico Loop Current 

rarely maintain coherence over the continental shelf, so we only used “distance to eddy” covariates in models of off-

shelf sub-regions. 

We obtained all covariates from gridded remote sensing and ocean model products (Supplementary Table S3). 

After obtaining the original products, we projected them to a 10 km resolution grid that used an Albers equal area 

map projection designed to minimize spatial error within the study areas. Next, we prepared 8-day climatologies for 

the dynamic products by binning and averaging the available time series. Finally, we obtained covariate values for 

the survey segments by interpolating the values of the 10 km grids at the segment centroids. For physiographic 

covariates we used bilinear interpolation. For dynamic oceanographic covariates, we obtained contemporaneous and 

climatological values using trilinear interpolation, with either the date of the survey (for contemporaneous values) or 

the day of the year (for climatological values) as the time dimension. We performed all geoprocessing and sampling 

of covariates using ArcGIS 10.2.2 and the Marine Geospatial Ecology Tools software13. 

For strata having more than 40 sightings, we fitted multivariate models. For strata having 20-40 sightings, we 

fitted univariate models so as to be parsimonious and not risk overfitting the model. For some of these we tested 

many covariates and selected the one that explained the most deviance; for others, we selected a specific covariate 

based on the known ecology of the taxon. Finally, when less than 20 sightings were available, we fitted a model with 

no covariates, producing a mean density estimate for the modeled stratum; this is typically known as a “stratified 

model”. 
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When a model included dynamic oceanographic covariates, we fitted three versions of it. The first used 8-day 

climatological estimates of the covariates (e.g. mean sea surface temperature (SST) for a given 8 days of the year, 

averaged over 30 years). These allowed the model to consider regular seasonal variations but not inter-annual and 

ephemeral variations. The second version used contemporaneous estimates (e.g. SST on the date of the survey 

segment, from a daily satellite image). These allowed the model to capture a full range of temporal variations—

inter-annual, seasonal, and ephemeral—but suffered from data loss due to clouds or because satellites had not been 

aloft for the entire 1992-2014 study period. We restricted this version to the segments that had values for all 

covariates under consideration. The third version used climatological covariates but was restricted to the 

contemporaneous version’s segments, to obtain a climatological version whose goodness-of-fit statistics were 

directly comparable to the contemporaneous version’s statistics (by virtue of being fitted to the same segments). To 

distinguish between the first and third versions, which both used climatological covariates, we refer to them as the 

“climatological model” and “climatological-same-segments model”, respectively. 

To alleviate the data loss problem with contemporaneous covariates, we usually tested the three model versions 

with a sequence of candidate formulations that progressively added covariates derived from increasingly modern 

satellites, introducing more explanatory power at the cost of losing more survey segments. The first formulation 

included just physiographic covariates, resulting in no data loss. In this case, only one model version was necessary, 

as no dynamic covariates were used. The second formulation added SST and wind covariates. These data were 

available for the entire 1992-2014 study period, and we used products that blended observations from multiple 

satellites to fill data gaps, resulting in very little loss of survey data. The third formulation added covariates derived 

from ocean currents. These were also bended, gap-filled products but were only available for 1993-2013, forcing us 

to discard surveys from 1992 and 2014. The fourth formulation added biological covariates. Not all of these were 

gap-filled; we applied a Gaussian smoother that reduced the data gaps to < 10% of the pixels. These were only 

available from late 1997-2013 or 2014, depending on the covariate; we discarded surveys performed outside this 

window, resulting in a substantial loss of survey data, particularly in the GOM region. 

We fitted all models using the R mgcv package version 1.8-4 14,15. We used thin-plate regression splines with 

shrinkage (bs="ts").  To help preserve the ecological interpretability of functional relationships, we limited each 

spline to 4 degrees of freedom. We used a shrinkage approach for selecting covariates for the models: after model 

fitting, if a covariate p-value was greater than 0.05 or its estimated degrees of freedom were less than 0.85 (resulting 

in its estimated confidence limits enclosing 0 throughout the range of the covariate), we removed the covariate from 

the model and refitted it. We assumed the Tweedie distribution and allowed mgcv to estimate the Tweedie p 

parameter (family=tw()). We used the REML optimization method16. The taxon-specific supplementary reports 

available at the OBIS-SEAMAP repository document the model formulations and provide diagnostic plots and 

statistics. During model checking procedures, we examined Q-Q plots of deviance residuals and plots of random 

quantile residuals vs. the linear predictor, among other diagnostics. We also produced correlograms of scaled 

Pearson residuals to check for autocorrelation. Autocorrelation occasionally occurred at a lag of 1 segment, but was 

generally low (e.g. r < 0.05) but statistically significant at the p < 0.05 level due to the large number of segments in 

the study. Generalized additive mixed models (GAMMs) have been recommended to address autocorrelation17; this 

was beyond the scope of our study but remains for consideration in a future revision of our models. 

Prediction of Density Surfaces. For each of the three model versions, we selected the formulation that 

explained the most deviance and then predicted density surfaces from the fitted model applied to a 10 km grids of 

the environmental covariates. We predicted the climatological and climatological-same-segments models on each of 

the 8-day climatological periods spanned by the season, resulting in a maximum of 46 8-day predictions (for a year-

round model). We predicted the contemporaneous model at a 1-day time step across the time period for which both 

survey data and covariates were available. For example, for Gulf of Mexico sperm whales, a year-round model was 

used, yielding 365 predictions per year (366 on leap years). Of the four model formulations tested, the model with 

physiographic, SST, and current covariates explained the most deviance. The covariates were available from 1993-

2013, while the survey data were available from 1992-2009; therefore the prediction period was all days of 1993-

2009, comprising 6209 daily predictions. 

Selection of Best Models and Summarization of Density Surfaces. After predicting density surfaces for 

the three model versions, we inspected them and the model diagnostics, and selected either the climatological or 

contemporaneous version as our “best” model for the taxon. This was informed by the models’ statistical 

performance, the spatiotemporal noisiness of the predictions, how much survey data was lost in the 
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contemporaneous model, and our judgment of how well the predictions matched well-established findings from the 

literature. All else being equal, we selected the model that explained the most deviance. 

Prospective model users requested that predictions from the best model be summarized climatologically at a 

monthly time step—i.e., for each taxon, they wanted 12 density surfaces, one for each month, with each estimating 

the mean density of the taxon during that month, averaged over all years of the study. To confidently summarize the 

predictions at a monthly time step, we required: 1) evidence in the literature of the taxon shifting distribution 

seasonally, 2) sufficient survey coverage, both spatially and temporally, to detect the shift, and 3) a spatial pattern in 

the sightings and monthly-summarized predictions that resembled the expectation described by the literature. If all 

of these conditions were met, we produced monthly summaries for model users. If any were not, we produced a 

single seasonal summary that spanned all months of the season.  

When there were so few sightings that we fitted a traditional stratified model, we applied the mean density 

estimate across the modeled season and sub-region, yielding a density surface that had the same value across the 

season and sub-region. 

For comparison to other modeling efforts, such as those from the NMFS Stock Assessment Reports, we 

produced total abundance estimates for each season by computing the mean density of all pixels in the modeled area 

and multiplying by its area (main text Figs. 2-5, Supplementary Table S3). 

Estimation of Uncertainty. In tandem with the density surfaces and total abundance predictions, we also 

produced uncertainty estimates using the method described by Miller et al.17, Appendix B, section 3.2, adapted from 

the implementation of the dsm.var.gam function of the R dsm package version 2.2.5. For the seasonally or 

monthly-summarized density surfaces, we produced corresponding surfaces representing the standard error (SE) and 

coefficient of variation (CV) of each density surface pixel, applying Miller et al.’s method on a per-pixel basis. To 

estimate SE and CV for the total abundance predictions, we applied Miller et al.’s method to all of the pixels 

together. 

The SE and CV estimates represented the uncertainty in the spatial model only (i.e. of the GAM parameter 

estimates, or of the mean density estimate when a stratified model was fitted), and therefore underestimate the true 

uncertainty. Traditionally, SE and CV estimates for density surface models incorporate the uncertainty in the 

detection functions and g(0) estimates as well. Miller’s method could not incorporate these sources of uncertainty 

when more than one detection function or g(0) estimate was used, as occurred with all of our models. Barring new 

statistical innovations, the only way to incorporate these is to perform a nonparametric bootstrap. This was 

intractable with the computing resources available for our project; the models that used contemporaneous covariates 

required as many as 108 predictions per model for the EC region; properly bootstrapping these models would 

increase this to 1011 predictions. We plan to secure the necessary computational resources to accomplish this in a 

future revision of our models. 
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Supplementary Tables 

Supplementary Table S1. Modeled taxa, with counts of sightings reported and retained in each analysis region. 

Notes: 1: We classified these ambiguous sightings as the modeled taxon from environmental, day of year, or group 

size covariates. 2: In the EC, we counted ambiguous “Bryde’s or sei whale” sightings in both the Bryde’s whale and 

sei whale models, as a precautionary measure. 3: In the GOM, we classified ambiguous “Bryde’s or sei whale” and 

“Balaenoptera spp.” sightings as Bryde’s whales, following Maze-Foley and Mullin18. 4: We modeled these species 

as a guild; too few fully-resolved sightings were reported to build a classifier from them. 5: Only short-finned pilot 

whales occur in the GOM; we did not need the “pilot whales” guild there. 6: We lacked sufficient pantropical 

spotted dolphin sightings to fit a classification model for these ambiguous sightings; they all occurred in a northerly 

area near sightings of Atlantic spotted dolphins, so we treated them as such. 7: For harbor porpoises, we restricted 

the analysis to data collected when the Beaufort sea state was 2 or less, following Hammond et al.19. 

   Sightings  

Group Modeled taxon Identification reported by observer EC GOM Note 

S
m

al
l 

d
el

p
h

in
o

id
s 

Atlantic spotted dolphin Atlantic spotted dolphin 795 312  

(Stenella frontalis) Atlantic spotted or bottlenose dolphin 33 35 1 

 Atlantic or pantropical spotted dolphin 10  6 

 Total: 838 347  

Atlantic white-sided dolphin Atlantic white-sided dolphin 1,670   

(Lagenorhynchus acutus) Atlantic white-sided or short-beaked common dolphin 596   

 Total: 2,266   

Bottlenose dolphin Bottlenose dolphin 4,603 1,733  

(Tursiops truncatus) Atlantic spotted or bottlenose dolphin 54 116 1 

 Total: 4,657 1,849  

Clymene dolphin 

(Stenella clymene) 

Clymene dolphin 11 78  

Fraser's dolphin 

(Lagenodelphis hosei) 

Fraser's dolphin 2 5  

Harbor porpoise 

(Phocoena phocoena) 

Harbor porpoise 2,018  7 

Pantropical spotted dolphin 

(Stenella attenuata) 

Pantropical spotted dolphin 17 719  

Rough-toothed dolphin 

(Steno bredanensis) 

Rough-toothed dolphin 11 51  

Short-beaked common dolphin Short-beaked common dolphin 938   

(Delphinus delphis) Atlantic white-sided or short-beaked common dolphin 251  1 

 Total: 1,189   

Spinner dolphin 

(Stenella longirostris) 

Spinner dolphin 2 71  

Striped dolphin 

(Stenella coeruleoalba) 

Striped dolphin 195 92  

White-beaked dolphin 

(Lagenorhynchus albirostris) 

White-beaked dolphin 12   

(continued next page)  
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L
ar

g
e 

d
el

p
h

in
o

id
s 

False killer whale 

(Pseudorca crassidens) 

False killer whale 2 19  

Killer whale 

(Orcinus orca) 

Killer whale 4 16  

Melon-headed whale Melon-headed whale 4 25  

(Peponocephala electra) Melon-headed or pygmy killer whale  4 1 

 Total: 4 29  

Pilot whales (guild) Long-finned pilot whale (G. melas)    

(Globicephala spp.) Short-finned pilot whale (G. macrorhynchus) 86   

 Long-finned or short-finned pilot whale 823   

 Total: 909  4 

Pygmy killer whale Pygmy killer whale  18  

(Feresa attenuata) Melon-headed or pygmy killer whale  9 1 

 Total:  27  

Risso's dolphin 

(Grampus griseus) 

Risso's dolphin 721 282  

Short-finned pilot whale 

(Globicephala macrorhynchus) 

Short-finned pilot whale  50 5 

B
ea

k
ed

 a
n

d
 s

p
er

m
 w

h
al

es
 

Beaked whales (guild) Blainville's beaked whale (M. densirostris) 3 2  

(Mesoplodon and Ziphius spp.) Cuvier's beaked whale (Z. cavirostris) 46 22  

 Gervais' beaked whale (M. europaeus) 3 1  

 Sowerby's beaked whale (M. bidens) 14   

 True's beaked whale (M. mirus) 3   

 Unidentified Mesoplodon spp. 137 42  

 Unidentified Mesoplodon spp. or Ziphius sp. 20 49  

 Total: 226 116 4 

Kogia whales (guild) Dwarf sperm whale (K. sima) 4 16  

(Kogia spp.) Pygmy sperm whale (K. breviceps) 3 41  

 Dwarf or pygmy sperm whale 24 167  

 Total: 31 219 4 

Northern bottlenose whale 

(Hyperoodon ampullatus) 

Northern bottlenose whale 4   

Sperm whale 

(Physeter macrocephalus) 

Sperm whale 501 360  

(continued next page)  
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B
al

ee
n

 w
h

al
es

 
Blue whale 

(Balaenoptera musculus) 

Blue whale 8   

Bryde’s whale Bryde’s whale  17  

(Balaenoptera edeni) Bryde’s or sei whale 4 4 2,3 

 Unidentified Balaenoptera spp.  4 3 

 Total: 4 25  

Fin whale Fin whale 1,690 1  

(Balaenoptera physalus) Fin or sei whale 410   

 Total: 2,100 1  

Humpback whale 

(Megaptera novaeangliae) 

Humpback whale 2,732   

Minke whale 

(Balaenoptera acutorostrata) 

Minke whale 1,031   

North Atlantic right whale 

(Eubalaena glacialis) 

North Atlantic right whale 1,634   

Sei whale Sei whale 585   

(Balaenoptera borealis) Bryde’s or sei whale 4  2 

 Fin or sei whale 232  1 

 Total: 821   

  Grand total, all sightings: 21,946 4,361  

 

 

Supplementary Table S2. Ambiguous sightings omitted from the analysis. For “Bottlenose or rough-toothed 

dolphin”, we lacked the sightings necessary to attempt a habitat-based classification. For “Risso's or Bottlenose 

dolphin”, the sighting occurred in habitat occupied by both species, making habitat-based classification 

inconclusive. For the rest, the reported identifications were too generic for classification. 

Identification reported by observer EC GOM 

Bottlenose or rough-toothed dolphin 1  

Common dolphin or Stenella spp. 1  

Risso's or Bottlenose dolphin 1  

Unidentified Balaenoptera spp. 21  

Unidentified baleen whale 18  

Unidentified cetacean 37  

Unidentified delphinid 1,020 335 

Unidentified dolphin 6  

Unidentified large whale 796 38 

Unidentified medium whale 19  

Unidentified odontocete 2,408 118 

Unidentified porpoise or dolphin 2  

Unidentified small cetacean 3  

Unidentified small delphinid 5  

Unidentified small whale 52 44 

Unidentified Stenella spp. 24 50 

Unidentified whale 372  

Total: 4,786 585 
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Supplementary Table S3. Candidate covariates for the spatial models. All covariates were rescaled to the 10 km 

Albers equal area map projection used for the analysis. Each model only considered the covariates that were 

appropriate for the modeled region and known ecology of the taxon. 

Type Covariates Resolution Time range Description 

P
h

y
si

o
g

ra
p

h
ic

 

Depth, 

Slope 

30 arc sec  Seafloor depth and slope, derived from SRTM30-PLUS 

global bathymetry20 

DistToShore, 

DistTo125m, 

DistTo300m, 

DistTo1500m 

30 arc sec  Distance to the closest shoreline, excluding Bermuda and 

Sable Island, and various ecologically-relevant isobaths20 

DistToCanyon, 

DistToCanyon

OrSeamount 

30 arc sec  Distance to the closest submarine canyon, and to the closest 

canyon or seamount21 

S
S

T
 &

 W
in

d
s SST, 

DistToFront 

0.2°, daily 1991-2014 Foundation sea surface temperature (SST), from GHRSST 

Level 4 CMC SST22, and distance to the closest SST front 

identified with the Canny edge detection algorithm23 

WindSpeed 0.25°, daily 1991-2014 30-day running mean of NOAA NCDC 1/4° Blended Sea 

Winds24 

C
u

rr
en

ts
 

TKE, 

EKE 

0.25°, daily 1993-2013 Total kinetic energy (TKE) and eddy kinetic energy (EKE), 

from Aviso 1/4° DT-MADT geostrophic currents  

DistToEddy, 

DistToAEddy, 

DistToCEddy 

0.25°, weekly 1993-2013 Distance to the ring of the closest geostrophic eddy having 

any (DistToEddy), anticyclonic (DistToAEddy), or cyclonic 

(DistToCEddy) polarity, from Aviso 1/4° DT-MADT using a 

revision of the Chelton et al. algorithm25; we tested eddies at 

least 9, 4, and 0 weeks old 

B
io

lo
g

ic
al

 

Chl 9 km, daily 1997-2014 GSM merged SeaWiFS/Aqua/MERIS/VIIRS chlorophyll 

(Chl) a concentration26, smoothed with a 3D Gaussian 

smoother to reduce data loss to < 10% 

VGPM, 

CumVGPM45, 

CumVGPM90 

9 km, 8 days 1997-2014 Net primary production (mg C m-2 day-1) derived from 

SeaWiFS and Aqua using the Vertically Generalized 

Production Model (VPGM)27; we tested the original 8 day 

estimates as well as 45 and 90 day running accumulations 

PkPP, 

PkPB 

0.25°, weekly 1997-2013 Zooplankton production (PkPP; g m-2 day-1) and biomass 

(PkPB; g m-2) from the SEAPODYM ocean model28 

EpiMnkPP, 

EpiMnkPB 

0.25°, weekly 1997-2013 Epipelagic micronekton production (EpiMnkPP; g m-2 day-1) 

and biomass (EpiMnkPB; g m-2) from the SEAPODYM 

model28 
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Supplementary Table S4. Summary of results, by modeled taxon, region, and season. Model type “both” means 

one sub-region was modeled with a DSM and another was modeled with a stratified model. Prediction resolution 

gives the temporal resolution of the density surface predicted by the best model. % Area covered, N̂, and CV give 

the percentage of the study area covered by the surface, total abundance of the surface averaged across the season, 

and coefficient of variation (CV) of the total abundance. The CV estimate only incorporates the uncertainty of the 

spatial model. 

Group Modeled taxon Region Season 

Model 

type 

Prediction 

resolution 

% Area 

covered N̂ CV 

S
m

al
l 

d
el

p
h

in
o

id
s 

Atlantic spotted dolphin EC Year-round DSM Year-round 100 55,436 0.32 

 GOM Year-round DSM Year-round 100 47,488 0.13 

Atlantic white-sided dolphin EC Year-round DSM Monthly 100 37,180 0.07 

Bottlenose dolphin EC Year-round DSM Monthly 100 97,476 0.06 

 GOM Year-round DSM Year-round 100 138,602 0.06 

Clymene dolphin EC Year-round Stratified Year-round 100 12,515 0.56 

 GOM Year-round DSM Year-round 100 11,000 0.16 

Fraser’s dolphin EC Year-round Stratified Year-round 100 492 0.76 

 GOM Year-round Stratified Year-round 100 1,665 0.73 

Harbor porpoise EC Winter (Nov-May) DSM Monthly 56 17,651 0.17 

  Summer (Jun-Oct) DSM Monthly 92 45,089 0.12 

Pantropical spotted dolphin EC Year-round Stratified Year-round 100 4,436 0.33 

 GOM Year-round DSM Year-round 100 84,014 0.06 

Rough-toothed dolphin EC Year-round Stratified Year-round 100 532 0.36 

 GOM Year-round DSM Year-round 100 4,853 0.19 

Short-beaked common dolphin EC Year-round DSM Monthly 100 86,098 0.12 

Spinner dolphin EC Year-round Stratified Year-round 100 262 0.93 

 GOM Year-round DSM Year-round 100 13,485 0.24 

Striped dolphin EC Year-round DSM Year-round 100 75,657 0.21 

 GOM Year-round DSM Year-round 100 4,914 0.17 

White-beaked dolphin EC Year-round Stratified Year-round 100 39 0.42 

(continued next page)  
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L
ar

g
e 

d
el

p
h

in
o

id
s 

False killer whale EC Year-round Stratified Year-round 100 95 0.84 

 GOM Year-round Stratified Year-round 100 3,204 0.36 

Killer whale EC Year-round Stratified Year-round 100 11 0.82 

 GOM Year-round DSM Year-round 100 185 0.41 

Melon-headed whale EC Year-round Stratified Year-round 100 1,175 0.50 

 GOM Year-round DSM Year-round 100 6,733 0.30 

Pilot whales (guild) EC Year-round DSM Year-round 100 18,977 0.11 

Pygmy killer whale GOM Year-round DSM Year-round 100 2,126 0.30 

Risso’s dolphin EC Year-round DSM Monthly 100 7,732 0.09 

 GOM Year-round DSM Year-round 100 3,137 0.10 

Short-finned pilot whales GOM Year-round DSM Year-round 100 1,981 0.18 

B
ea

k
ed

 a
n

d
 s

p
er

m
 w

h
al

es
 Beaked whales (guild) EC Year-round Both Year-round 100 14,491 0.17 

 GOM Year-round DSM Year-round 100 2,910 0.16 

Kogia whales (guild) EC Year-round Stratified Year-round 100 678 0.23 

 GOM Year-round DSM Year-round 100 2,234 0.19 

Northern bottlenose whale EC Year-round Stratified Year-round 85 90 0.63 

Sperm whale EC Year-round DSM Monthly 100 5,353 0.12 

 GOM Year-round DSM Year-round 100 2,128 0.08 

B
al

ee
n

 w
h

al
es

 

Blue whale EC Year-round Stratified Year-round 100 11 0.41 

Bryde’s whale EC Year-round Stratified Year-round 100 7 0.58 

 GOM Year-round DSM Year-round 100 44 0.27 

Fin whale EC Year-round DSM Monthly 100 4,633 0.08 

 GOM Year-round Stratified Year-round 100 9 1.01 

Humpback whale EC Winter (Dec-Mar) DSM Monthly 100 205 0.16 

  Summer (Apr-Nov) DSM Monthly 100 1,637 0.07 

Minke whale EC Winter (Nov-Mar) Both Monthly 54 740 0.23 

  Summer (Apr-Oct) Both Monthly 100 2,112 0.05 

North Atlantic right whale EC Winter (Nov-Feb) DSM Monthly 80 535 0.45 

  Spring (Mar-Apr) DSM Monthly 78 416 0.12 

  Summer (May-Jul) Both Monthly 80 379 0.07 

  Fall (Aug-Oct) DSM Monthly 93 334 0.25 

Sei whale EC Winter (Dec-Mar) Stratified Monthly 79 98 0.25 

  Spring (Apr-Jun) DSM Monthly 80 627 0.14 

  Summer (Jul-Sep) DSM Monthly 100 717 0.30 

  Fall (Oct-Nov) DSM Monthly 11 37 0.19 
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Supplementary Figures 

 

 

Supplementary Figure S1. Detection hierarchy for aerial surveys. Surveys marked with * were used to fit 

detection functions but not the spatial model. 
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Supplementary Figure S2. Detection hierarchy for shipboard surveys. Surveys marked with * were used to fit 

detection functions but not the spatial model. 
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Supplementary Figure S3. Schematic for the EC North Atlantic right whale winter season (November-February) 

model, showing an example in which we split the study area on the basis of sub-units of the population likely 

exhibiting different relationships to the environment (right whales overwintering on the feeding grounds vs. those on 

the calving grounds). This model also shows an example of where we suspected a taxon was present—Canadian 

waters, in this case—but lacked the survey effort to model it confidently. Figure produced with ArcGIS 10.2.2 

(http://www.arcgis.com); background map credits: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors. 
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Supplementary Figure S4. Schematic for the GOM sperm whale year-round model, showing an example in 

which we split the study area on the basis of the taxon not occupying part of the area—the continental shelf, in this 

case. Figure produced with ArcGIS 10.2.2 (http://www.arcgis.com); background map credits: Esri, DeLorme, 

GEBCO, NOAA NGDC, and other contributors. 
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